Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochemistry ; 62(11): 1744-1754, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2324962

RESUMEN

A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Biosíntesis de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo
2.
ACS Infect Dis ; 8(8): 1468-1479, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1960247

RESUMEN

Serological testing for acute infection or prior exposure is critical for patient management and coordination of public health decisions during outbreaks. Current methods have several limitations, including variable performance, relatively low analytical and clinical sensitivity, and poor detection due to antigenic drift. Serological methods for SARS-CoV-2 detection for the ongoing COVID-19 pandemic suffer from several of these limitations and serves as a reminder of the critical need for new technologies. Here, we describe the use of ultrabright fluorescent reagents, Plasmonic Fluors, coupled with antigen arrays that address a subset of these limitations. We demonstrate its application using patient samples in SARS-CoV-2 serological assays. In our multiplexed assay, SARS-CoV-2 antigens were spotted into 48-plex arrays within a single well of a 96-well plate and used to evaluate remnant laboratory samples of SARS-CoV-2 positive patients. Signal-readout was performed with Auragent Bioscience's Empower microplate reader, and microarray analysis software. Sample volumes of 1 µL were used. High sensitivity of the Plasmonic Fluors combined with the array format enabled us to profile patient serological response to eight distinct SARS-CoV-2 antigens and evaluate responses to IgG, IgM, and IgA. Sensitivities for SARS-CoV-2 antigens during the symptomatic state ranged between 72.5 and 95.0%, specificity between 62.5 and 100%, and the resulting area under the curve values between 0.76 and 0.97. Together, these results highlight the increased sensitivity for low sample volumes and multiplex capability. These characteristics make Plasmonic Fluor-enhanced antigen arrays an attractive technology for serological studies for the COVID-19 pandemic and beyond.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Humanos , Pandemias , Sensibilidad y Especificidad
3.
Data Brief ; 43: 108415, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1906939

RESUMEN

SARS-CoV-2 pandemic opens up the curiosity of understanding the coronavirus. This demand for the development of the regent, which can be used for academic and therapeutic applications. The present data provide the biochemical characterization of synthetically developed monoclonal antibodies for the SARS-CoV-2 proteins. The antibodies from phage-displayed antibody libraries were selected with the SARS-CoV-2 proteins immobilized in microwell plates. The clones which bind to the antigen in Fab-phage ELISA were selected, and a two-point competitive phage ELISA was performed. Antibodies binding kinetic of IgGs for SARS-CoV2 proteins further carried with B.L.I. Systematic analysis of binding with different control proteins and purified SARS-CoV-2 ensured the robustness of the antibodies.

4.
ACS Chem Biol ; 17(7): 1978-1988, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1900425

RESUMEN

The spread of COVID-19 has been exacerbated by the emergence of variants of concern (VoC). Many VoC contain mutations in the spike protein (S-protein) and are implicated in infection and response to therapeutics. Bivalent neutralizing antibodies (nAbs) targeting the S-protein receptor-binding domain (RBD) are promising therapeutics for COVID-19, but they are limited by low potency and vulnerability to RBD mutations in VoC. To address these issues, we used naïve phage-displayed peptide libraries to isolate and optimize 16-residue peptides that bind to the RBD or the N-terminal domain (NTD) of the S-protein. We fused these peptides to the N-terminus of a moderate-affinity nAb to generate tetravalent peptide-IgG fusions, and we showed that both classes of peptides were able to improve affinities for the S-protein trimer by >100-fold (apparent KD < 1 pM). Critically, cell-based infection assays with a panel of six SARS-CoV-2 variants demonstrated that an RBD-binding peptide was able to enhance the neutralization potency of a high-affinity nAb >100-fold. Moreover, this peptide-IgG was able to neutralize variants that were resistant to the same nAb in the bivalent IgG format, including the dominant B.1.1.529 (Omicron) variant that is resistant to most clinically approved therapeutic nAbs. To show that this approach is general, we fused the same peptide to a clinically approved nAb drug and showed that it enabled the neutralization of a resistant variant. Taken together, these results establish minimal peptide fusions as a modular means to greatly enhance affinities, potencies, and breadth of coverage of nAbs as therapeutics for SARS-CoV-2.


Asunto(s)
Bacteriófagos , Tratamiento Farmacológico de COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales/genética , Bacteriófagos/genética , Humanos , Inmunoglobulina G/genética , Pruebas de Neutralización , Biblioteca de Péptidos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
J Mol Biol ; 434(10): 167583, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1778319

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 infection has impacted the world economy and healthcare infrastructure. Key reagents with high specificity to SARS-CoV-2 proteins are currently lacking, which limits our ability to understand the pathophysiology of SARS-CoV-2 infections. To address this need, we initiated a series of studies to generate and develop highly specific antibodies against proteins from SARS-CoV-2 using an antibody engineering platform. These efforts resulted in 18 monoclonal antibodies against nine SARS-CoV-2 proteins. Here we report the characterization of several antibodies, including those that recognize Nsp1, Nsp8, Nsp12, and Orf3b viral proteins. Our validation studies included evaluation for use of antibodies in ELISA, western blots, and immunofluorescence assays (IFA). We expect that availability of these antibodies will enhance our ability to further characterize host-viral interactions, including specific roles played by viral proteins during infection, to acquire a better understanding of the pathophysiology of SARS-CoV-2 infections.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Proteínas Virales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/metabolismo , Técnicas de Visualización de Superficie Celular , ARN Polimerasa Dependiente de ARN de Coronavirus/análisis , Ensayo de Inmunoadsorción Enzimática , Humanos , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/análisis , Proteínas Virales/análisis
6.
Respirology ; 27(4): 301-310, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1532912

RESUMEN

BACKGROUND AND OBJECTIVE: Few head-to-head evaluations of immune responses to different vaccines have been reported. METHODS: Surrogate virus neutralization test (sVNT) antibody levels of adults receiving either two doses of BNT162b2 (n = 366) or CoronaVac (n = 360) vaccines in Hong Kong were determined. An age-matched subgroup (BNT162b2 [n = 49] vs. CoronaVac [n = 49]) was tested for plaque reduction neutralization (PRNT) and spike-binding antibody and T-cell reactivity in peripheral blood mononuclear cells. RESULTS: One month after the second dose of vaccine, BNT162b2 elicited significantly higher PRNT50 , PRNT90 , sVNT, spike receptor binding, spike N-terminal domain binding, spike S2 domain binding, spike FcR binding and antibody avidity levels than CoronaVac. The geometric mean PRNT50 titres in those vaccinated with BNT162b2 and CoronaVac vaccines were 251.6 and 69.45, while PRNT90 titres were 98.91 and 16.57, respectively. All of those vaccinated with BNT162b2 and 45 (91.8%) of 49 vaccinated with CoronaVac achieved the 50% protection threshold for PRNT90. Allowing for an expected seven-fold waning of antibody titres over 6 months for those receiving CoronaVac, only 16.3% would meet the 50% protection threshold versus 79.6% of BNT162b2 vaccinees. Age was negatively correlated with PRNT90 antibody titres. Both vaccines induced SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at 1 month post-vaccination but CoronaVac elicited significantly higher structural protein-specific CD4+ and CD8+ T-cell responses. CONCLUSION: Vaccination with BNT162b2 induces stronger humoral responses than CoronaVac. CoronaVac induces higher CD4+ and CD8+ T-cell responses to the structural protein than BNT162b2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Vacuna BNT162 , COVID-19/prevención & control , Hong Kong , Humanos , Leucocitos Mononucleares , SARS-CoV-2
7.
STAR Protoc ; 2(4): 100906, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1458864

RESUMEN

Nucleocapsid proteins are essential for SARS-CoV-2 life cycle. Here, we describe protocols to gather domain-specific insights about essential properties of nucleocapsids. These assays include dynamic light scattering to characterize oligomerization, fluorescence polarization to quantify RNA binding, hydrogen-deuterium exchange mass spectrometry to map RNA binding regions, negative-stain electron microscopy to visualize oligomeric species, interferon reporter assay to evaluate interferon signaling modulation, and a serology assay to reveal insights for improved sensitivity and specificity. These assays are broadly applicable to RNA-encapsidated nucleocapsids. For complete details on the use and execution of this protocol, please refer to Wu et al. (2021).


Asunto(s)
COVID-19/sangre , Proteínas de la Nucleocápside de Coronavirus/sangre , Interferones/metabolismo , Nucleocápside/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/aislamiento & purificación , Antivirales/metabolismo , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Nucleocápside/genética , Fosfoproteínas/sangre , Fosfoproteínas/genética , Unión Proteica , ARN Viral/genética
8.
J Mol Biol ; 433(19): 167177, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1330982

RESUMEN

Neutralizing antibodies (nAbs) hold promise as therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and tetravalent versions block entry with a potency exceeding bivalent nAbs by an order of magnitude. Structural studies show that both the bivalent and tetravalent nAbs can make multivalent interactions with a single S-protein trimer, consistent with the avidity and potency of these molecules. Significantly, we show that the tetravalent nAbs show increased tolerance to potential virus escape mutants and an emerging variant of concern. Bivalent and tetravalent nAbs can be produced at large-scale and are as stable and specific as approved antibody drugs. Our results provide a general framework for enhancing antiviral therapies against COVID-19 and related viral threats, and our strategy can be applied to virtually any antibody drug.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Mutación , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Antivirales/uso terapéutico , Sitios de Unión , Chlorocebus aethiops , Células HEK293 , Humanos , Inmunoglobulina G , Modelos Moleculares , Unión Proteica , Ingeniería de Proteínas , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
9.
iScience ; 24(6): 102681, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1330908

RESUMEN

Nucleocapsid (N) encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays key roles in the replication cycle and is a critical serological marker. Here, we characterize essential biochemical properties of N and describe the utility of these insights in serological studies. We define N domains important for oligomerization and RNA binding and show that N oligomerization provides a high-affinity RNA-binding platform. We also map the RNA-binding interface, showing protection in the N-terminal domain and linker region. In addition, phosphorylation causes reduction of RNA binding and redistribution of N from liquid droplets to loose coils, showing how N-RNA accessibility and assembly may be regulated by phosphorylation. Finally, we find that the C-terminal domain of N is the most immunogenic, based on antibody binding to patient samples. Together, we provide a biochemical description of SARS-CoV-2 N and highlight the value of using N domains as highly specific and sensitive diagnostic markers.

10.
bioRxiv ; 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: covidwho-955697

RESUMEN

Nucleocapsid protein (N) is the most abundant viral protein encoded by SARS-CoV-2, the causative agent of COVID-19. N plays key roles at different steps in the replication cycle and is used as a serological marker of infection. Here we characterize the biochemical properties of SARS-CoV-2 N. We define the N domains important for oligomerization and RNA binding that are associated with spherical droplet formation and suggest that N accessibility and assembly may be regulated by phosphorylation. We also map the RNA binding interface using hydrogen-deuterium exchange mass spectrometry. Finally, we find that the N protein C-terminal domain is the most immunogenic by sensitivity, based upon antibody binding to COVID-19 patient samples from the US and Hong Kong. Together, these findings uncover domain-specific insights into the significance of SARS-CoV-2 N and highlight the diagnostic value of using N domains as highly specific and sensitive markers of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA